Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes
Authors
Abstract:
In the present study, an experimental study is carried out to investigate the effect of adding Al and Cu nanoparticles to the base fluid (water) on the heat transfer rate in a spirally coiled tube. The spirally coiled tube is fabricated from the straight copper tube with the inner and outer coil diameters of 100 and 420 mm, respectively. The experiments have been done for water and two types of nanofluids with different concentrations and at various operational conditions. The Thermal conductivities of these fluids have been measured experimentally. The results show that thermal conductivity of Cu-water nanofluid is about 18 % more than Al-water nanofluid at 2.23 vol. %. The forced convective heat transfer has been studied by changing the wall temperature, concentration, Gz number, and nanofluid type. The Results indicate that nanofluids have significant positive effect on convective heat transfer coefficient. Also, the Nusselt number increases with an increase in the Gz number. The most important effective parameters on the heat transfer are found to be the Gz number based on the analysis of variance (ANOVA) method. Based on the statistical analysis, a new correlation for the Nusselt number is introduced.
similar resources
Comparison of convective heat transfer of turbulent nanofluid flow through helical and conical coiled tubes
Application of nanofluid and coiled tubes are two passive methods for increasing the heat transfer. In the present study, the turbulent flows of water and nanofluid in coiled tubes heat exchanger were numerically studied. CuO-water nanofluid containing 1 vol% copper oxide nanoparticles was used and single-phase approach was considered for nanofluid flow. The effect of different geometrical para...
full textNumerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes
Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of t...
full textHeat Transfer Study of Perforated Fin under Forced Convection
Fins are protrusions on a heat transfer surface to augment heat transfer rate from it. The increase in area exposed to convection in case of finned surfaces results in increased heat transfer rate. In this study heat transfer characteristics of a pin fin with perforation is numerically analyzed. A pin fin is fabricated and experiments are done under forced convection conditions. The experimenta...
full textCFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid
In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...
full textCFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid
In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...
full textExperimental Investigation of Mixed Convection Heat Transfer in Vertical Tubes by Nanofluid: Effects of Reynolds Number and Fluid Temperature
An experimental investigation was carried out to study mixed convection heat transfer from Al2O3-water nanofluid inside a vertical, W-shaped, copper-tube with uniform wall temperature. The tests covered different ranges of some involved parameters including Reynolds number, temperature and particles volume fraction. The results showed that the rate of heat transfer coefficient improved with Rey...
full textMy Resources
Journal title
volume 2 issue 2
pages 45- 50
publication date 2015-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023